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Abstract
The nonlinear Schrödinger equation, complemented by a confining potential,
possesses a discrete set of stationary solutions. These are called coherent
modes, since the nonlinear Schrödinger equation describes coherent states.
Such modes are also called topological because the solutions corresponding
to different spectral levels have principally different spatial dependences. The
theory of resonant excitation of these topological coherent modes is presented.
The method of multiscale averaging is employed in deriving the evolution
equations for resonant guiding centres. A rigorous qualitative analysis for
these nonlinear differential equations is given. Temporal behaviour of fractional
populations is illustrated by numerical solutions.

PACS numbers: 32.80.Pj, 42.50.−p

1. Introduction

The nonlinear Schrödinger equation has recently attracted a great deal of interest, since
it provides an adequate description for collective quantum states of trapped Bose atoms (see
reviews [1–3]). This equation, as applied to Bose systems, is often termed the Gross–Pitaevskii
equation, who first considered that physical application [4, 5].

For the purpose of accuracy in terminology, the following is worth mentioning. As is
possible to show [6], the nonlinear Schrödinger equation is an exact equation for coherent
states. While the correct meaning of the Gross–Pitaevskii equation [2] is that of an approximate
mean-field equation for the broken symmetry order parameter.

Coherent states of trapped atoms are the solutions of the nonlinear Schrödinger equation
with a confining potential. Stationary solutions of this equation form a discrete set.
Wavefunctions, corresponding to different energy levels, are called [6] coherent modes.
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Different coherent modes possess qualitatively different spatial behaviour, because of which
they may be named topological coherent modes. Being the solutions of the nonlinear
Schrödinger equation, these modes have nothing to do with collective excitations described
by the linear Bogolubov–De Gennes equations.

Bose–Einstein condensation of trapped atoms can be understood [3] as the condensation
to the ground coherent state, that is, to the state with the lowest single-particle energy. In
an equilibrium system, atoms always condense to the ground state. But, if an additional
alternating field is switched on, with a frequency in resonance with the transition frequency
between two coherent energy levels, then higher topological modes can be excited, thus
creating nonground-state condensates. The feasibility of such modes was first advanced in
[7]. The alternating resonant field can be produced by modulating the confining potential of
the trap or by imposing additional external fields. For instance, a rotating field for exciting
vortices can be created by multiple laser beams [8–10]. The resonant excitation can lead to
the formation of several vortices [11] and, possibly, skyrmions in a spinor condensate [12].
Topological coherent modes have also been studied in [13, 14]. Excitation of a dipole mode
in a two-component condensate was observed [15]. The possibility of creating dark soliton
states by means of the resonant excitation was studied [11]. As is found, dark soliton states
are unstable with respect to their decomposition into several vortices. The states of multiple
basic vortices are also more stable than a state of a single vortex with a high winding number
[3, 16, 17]. Investigating the temporal behaviour [18, 19] and collective excitations [20] of the
formed coherent modes, anomalous dynamical phenomena were found [18, 19] which recall
a kind of critical phenomenon. The origin of the latter has not been completely understood.

The aim of the present paper is to develop the theory of the resonant formation of
topological coherent modes and provide an explanation of the dynamic critical phenomena.
For this purpose, we give a rigorous stability analysis for the nonlinear evolution equations
of guiding centres. We demonstrate that dramatic changes in dynamic properties occur when
crossing a saddle separatrix. The condition for the separatrix touching the boundary defines a
critical line on the parametric manifold. This analysis is illustrated by the numerical solutions
explicitly displaying a dramatic qualitative change in the dynamics of fractional populations
when crossing the critical line.

2. Resonant excitation

Consider a system of Bose atoms which have experienced Bose–Einstein condensation under
conditions typical of experiments with trapped atomic gases [1–3]. The coherent state of such
atoms is described [6] by a coherent field ϕ satisfying a nonlinear Schrödinger equation with
the nonlinear Hamiltonian

Ĥ (ϕ) = − h̄2

2m0
∇2 + U(r) + NA|ϕ|2 (1)

where m0 is atomic mass, U(r) is a confining potential, N is the number of trapped atoms and
A ≡ 4πh̄2as/m0 is the interaction strength with as being an s-wave scattering length.

Topological coherent modes are defined [7] as stationary solutions ϕn = ϕn(r) of the
nonlinear Schrödinger equation,

Ĥ (ϕn)ϕn = Enϕn. (2)

Here n is a multi-index labelling the quantum states of coherent modes, and En is a single-
particle energy of the given coherent mode, which is normalized to unity as (ϕn, ϕn) = 1.
The existence of the confining potential U(r) assumes that the spectrum {En} is discrete,
hence the set {ϕn} of eigenfunctions is countable.
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It is worth mentioning that the solutions to a nonlinear Schrödinger equation do not
necessarily form a basis and, in general, are not orthogonal. The property of being a basis
has been proved for the eigenfunction sets of only some one-dimensional nonlinear problems
[21, 22]. However, it is important to stress that we do not need and shall not use these
properties in what follows.

In order to induce intermode transitions, one has to impose an additional time-dependent
potential V̂ = V̂ (r, t) and consider a coherent field ϕ = ϕ(r, t) satisfying the temporal
nonlinear Schrödinger equation

ih̄
∂ϕ

∂t
= [Ĥ (ϕ) + V̂ ]ϕ. (3)

Assuming that at the initial time all atoms were condensed to the ground-state coherent mode,
one has the initial condition

ϕ(r, 0) = ϕ0(r). (4)

The transferring of atoms from the ground state to a higher mode requires the imposition of
an alternating potential

V̂ = V1(r) cos ωt + V2(r) sin ωt (5)

with a frequency ω being in resonance with the chosen transition frequency. If the required
excited mode has energy Ek, the transition frequency is

ωk ≡ 1

h̄
(Ek − E0). (6)

Then the resonance condition tells us that the detuning of ω from ωk is to be small,∣∣∣∣�ω

ω

∣∣∣∣ � 1 (�ω ≡ ω − ωk). (7)

One expects that, under resonance condition (7), only the considered modes, connected
by resonance frequency (6), will be mainly involved in the process of excitation. This can be
proved explicitly by invoking the method of averaging [23]. For this purpose, let us look for
the solution of equation (3) in the form

ϕ(r, t) =
∑

n

cn(t)ϕn(r) exp

(
− i

h̄
Ent

)
(8)

where cn(t) is a slowly varying amplitude, such that

h̄

En

∣∣∣∣dcn

dt

∣∣∣∣ � 1. (9)

Presentation (8) is to be substituted into equation (3), which is multiplied by exp
(

i
h̄
Ent

)
and whose right-hand side is averaged over time. Integrating over time, the amplitudes cn,
according to condition (9), are treated as quasi-invariants. The integration of exponents yields

lim
T →∞

1

T

∫ T

0
exp

{
i

h̄
(Em − En)t

}
dt = δmn

lim
T →∞

1

T

∫ T

0
exp

{
i

h̄
(Em + Ek − En − El)t

}
dt = δmnδkl + δmlδnk − δmkδknδkl.

This procedure results in the equation

dcn

dt
= −i

∑
m( �=n)

αnm|cm|2cn − i

2
δn0β0kck ei�ωt − i

2
δnkβ

∗
0kc0 e−i�ωt (10)
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where the notation used for the nonlinear transition amplitude is

αnm ≡ A
N

h̄

∫
|ϕn(r)|2 (

2|ϕm(r)|2 − |ϕn(r)|2) dr (11)

due to atomic interactions, and for the linear amplitude

β0k ≡ 1

h̄

∫
ϕ∗

0 (r)[V1(r) − iV2(r)]ϕk(r) dr (12)

caused by the resonant field (5). Note that the orthogonality of the modes ϕn(r) has nowhere
been required. The initial condition to equation (10), in line with condition (4), is

cn(0) = δn0. (13)

In the case when n �= 0, k, the solution to equation (10) can be written as

cn(t) = cn(0) exp

{
−i

∑
m( �=n)

αnm

∫ t

0
|cm(t ′)|2 dt ′

}
.

This, in compliance with the initial condition (13), shows that cn(t) = 0 for all n �= 0, k. So
that only the behaviour of c0(t) and ck(t) is nontrivial, with the related initial conditions

c0(0) = 1 ck(0) = 0. (14)

Thus, equation (10) reduces to the system of equations

dc0

dt
= −iα0k|ck|2c0 − i

2
β0kck ei�ωt

(15)
dck

dt
= −iαk0|c0|2ck − i

2
β∗

0kc0 e−i�ωt

with initial conditions (14). The solutions to equations (15) are called guiding centres.

3. Change of variables

Equations (15) can be simplified by changing the variables. To this end, it is convenient to
introduce the population difference

s ≡ |ck|2 − |c0|2. (16)

The amplitudes c0 and ck can be presented as

c0 =
(

1 − s

2

)1/2

exp

{
i

(
π0 +

�ω

2
t

)}
(17)

ck =
(

1 + s

2

)1/2

exp

{
i

(
π1 − �ω

2
t

)}

with π0 = π0(t) and π1 = π1(t) being real phases.
Let us define the combination

α ≡ 1
2 (α0k + αk0) (18)

of the amplitudes (11), which is a real quantity, present the amplitude (12) as

β0k ≡ β eiγ (β ≡ |β0k|) (19)

and also define the renormalized detuning

δ ≡ �ω + 1
2 (α0k − αk0). (20)
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Lastly, we introduce the phase variable

x ≡ π1 − π0 + γ. (21)

The new functional variables (16) and (21) change in the rectangle,

−1 � s � 1 0 � x � 2π. (22)

The related initial conditions are

s(0) = −1 x(0) = x0. (23)

The value x0 = π1(0) − π0(0) + γ can be any in the interval [0, 2π]. This is because, even
if the initial phases of the considered modes were the same, the quantity γ can be varied by
choosing an appropriate alternating potential (5). Also, even when π1(0) = π0(0), the time
dependence of π1(t) and π0(t) is different, so that the evolution of x = x(t) is not trivial.

With the new variables (16) and (21), equations (15) can be transformed to the Hamiltonian
form characterized by the Hamiltonian

H(s, x) = α

2
s2 − β

√
1 − s2 cos x + δs. (24)

The autonomous equations

ds

dt
= −∂H

∂x

dx

dt
= ∂H

∂s

are identical to those that follow from equations (15) after substituting expressions (17) there,
and which are

ds

dt
= −β

√
1 − s2 sin x

dx

dt
= αs +

βs√
1 − s2

cos x + δ. (25)

Equations (25) are more convenient for analysing than equations (15).
The autonomous Hamiltonian form of the evolution equations (25) leads to two

conclusions. First, there is no dissipation for the coherent modes. The absence of intrinsic
decoherence, connected with dissipation, here is quite clear. For such a decoherence to arise,
the Bose system is to be in contact with an external bath [24, 25] whose role can be played,
e.g., by largely detuned external laser beams [26] or by disturbing measurement instruments
[27]. Decoherence of a coherent wave packet may appear owing to the number-of-particle
fluctuations [28], which actually pre-supposes the existence of an external bath. The latter is
a general cause of dissipation for statistical systems [29, 30] (other references on dissipative
systems can be found in the recent review [31]).

Another conclusion which results from the Hamiltonian representation of the autonomous
evolution equations (25) is that in this dynamical system there can be no chaos. Hence the
critical phenomena discovered [18, 19] in the dynamics of fractional populations cannot be
attributed to the appearance of chaotic motion. The origin of these critical phenomena will be
elucidated in the following section.

4. General analysis

To understand what happens with the solutions to the evolution equations (25) under varying
parameters, we have to analyse the general phase structure of these equations. For simplifying
formulae, it is useful to introduce the dimensionless parameters

b ≡ β

α
ε ≡ δ

α
. (26)
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The first of the latter describes a relative intensity of the alternating field (5), while the second
parameter characterizes a relative value of the detuning (20). These parameters can be positive
as well as negative. It is important that the relative detuning be treated as a small parameter,
|ε| � 1.

Due to the existence of the integral of motion (24), the trajectory, starting at the initial
point (23) and defined by the equality H(s, x) = H(s0, x0), reads

s2

2
− b

√
1 − s2 cos x + εs = 1

2
− ε. (27)

The right-hand side of equations (25), with the notation (26), can be presented as

v1 ≡ −b
√

1 − s2 sin x v2 ≡ s +
bs√

1 − s2
cos x + ε. (28)

The stationary solutions to equations (25), given by v1 = v2 = 0, are defined by the equations

s4 + 2εs3 − (1 − b2 − ε2)s2 − 2εs − ε2 = 0 sin x = 0. (29)

The following analysis, keeping in mind the smallness of the detuning, will be accomplished in
the linear approximation with respect to ε. Also, one has to always remember that physically
admissible fixed-point solutions are only those that are in rectangle (22).

When b2 � 1, there exist fixed points

s∗
1 = ε

b
x∗

1 = 0

s∗
2 = − ε

b
x∗

2 = π (30)

s∗
3 = s∗

1 x∗
3 = 2π.

If 0 � b < 1, fixed points (30) continue to exist, but two new points arise

s∗
4 =

√
1 − b2 +

b2ε

1 − b2
x∗

4 = π

(31)

s∗
5 = −

√
1 − b2 +

b2ε

1 − b2
x∗

5 = π.

And if −1 < b � 0, then fixed points (30) again exist, but additional points appear

s∗
4 =

√
1 − b2 +

b2ε

1 − b2
x∗

4 = 0

s∗
5 = −

√
1 − b2 +

b2ε

1 − b2
x∗

5 = 0
(32)

s∗
6 = s∗

4 x∗
6 = 2π

s∗
7 = s∗

5 x∗
7 = 2π.

In this way, the value b2 = 1 corresponds to a dynamical phase transition, when the structure
of the phase portrait changes qualitatively.

To analyse the stability of motion, we consider the Jacobian expansion matrix X̂ = [Xij ]
with the elements

X11 ≡ ∂v1

∂s
= bs√

1 − s2
sin x X12 ≡ ∂v1

∂x
= −b

√
1 − s2 cos x

X21 ≡ ∂v2

∂s
= 1 +

b cos x

(1 − s2)3/2
X22 ≡ ∂v2

∂x
= −X11.
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The local expansion rate [32], defined as

�(t) ≡ 1

t
Re

∫ t

0
Tr X̂(t ′) dt ′

nullifies, �(t) = 0, as it should for Hamiltonian systems whose phase volume is conserved.
The eigenvalues of the expansion matrix X̂ are given by the equation

X2 = b2

1 − s2
(s2 sin2 x − cos2 x) − b

√
1 − s2 cos x. (33)

Evaluating the eigenvalues at the fixed points, we shall employ expressions (30)–(32), limiting
ourselves by the linear approximation in ε.

In the case of b2 > 1, we have

X±
1 = ± i

√
b(b + 1) = X±

3 X±
2 = ± i

√
b(b − 1) (34)

so that all fixed points (30) are centres.
When 0 � b < 1, the first and third fixed points remain the centres, while the second

fixed point (s∗
2 , x∗

2 ) becomes a saddle. The fixed points (31) are also the centres. The related
exponents are

X±
1 = ± i

√
b(1 + b) = X±

3 X±
2 = ±

√
b(1 − b)

(35)

X±
4 = ± i

√
1 − b2

[
1 +

(2 + b2)ε

(1 − b2)3/2

]1/2

X±
5 = ± i

√
1 − b2

[
1 − (2 + b2)ε

(1 − b2)3/2

]1/2

.

The saddle separatrices which are the trajectories that pass through the saddles and separate
the phase regions with qualitatively different dynamic properties, are given by the equation
H(s, x) = H(s∗

2 , x∗
2 ), which results in the separatrix equation

s2

2
− b

√
1 − s2 cos x + εs = b (36)

defining two separatrices, since this is a square equation with respect to s. The separatrix
extremal points can be found from the equation

ds

dx
= − b(1 − s2) sin x

(s + ε)
√

1 − s2 + bs cos x
= 0.

As follows from the above equations, the lower separatrix parts touch the boundary at the
points s = −1, x = 0, 2π , provided that

b + ε = 1
2 . (37)

In this way, accepting as initial conditions s0 = −1, x0 = 0, one has the following picture.
For b < 0.5 − ε, the motion is limited from above by the lower separatrix parts and from
below by the boundary s = −1. When the pumping parameter b > 0.5 − ε, the trajectory
passes to the phase region limited from above by the upper separatrix parts and from below by
the lower separatrix parts. If b = 0.5 − ε, the dynamical system is structurally unstable with
respect to small variations of initial conditions. On the manifold of the system parameters, the
line (37) plays the role of a critical line. In the vicinity of this line, solutions to the evolution
equations display dramatic effects, when a tiny variation of a parameter qualitatively changes
the properties of solutions. This makes it possible to call such dynamical effects the critical
dynamic phenomena [33].
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For the case when −1 < b � 0, the expansion exponents, corresponding to the fixed
points (30) and (32), are

X±
1 = ±

√
|b|(1 + b) = X±

3 X±
2 = ± i

√
|b|(1 − b)

X±
4 = ± i

√
1 − b2

[
1 +

(2 + b2)ε

(1 − b2)3/2

]1/2

= X±
6 (38)

X±
5 = ± i

√
1 − b2

[
1 − (2 + b2)ε

(1 − b2)3/2

]1/2

= X±
7 .

Hence, the first and third fixed points become the saddles, while all other points are the centres.
The separatrices connecting the saddles are defined by the equations H(s, x) = H(s∗

1 , x∗
1 ) =

H(s∗
3 , x∗

3 ), which yield

s2

2
− b

√
1 − s2 cos x + εs = −b. (39)

The lower separatrix part touches the boundary at the point s = −1, x = π under the condition

|b| + ε = 1
2 . (40)

The phase picture, as compared to the previous case 0 � b < 1, looks similar but shifted by
π along the x-axis. Now, if the initial point is s0 = −1, x0 = 0, the motion would be always
limited from above by the lower separatrix parts and from below by the boundary s = −1.
No dramatic changes would happen when varying b. However, if the initial point is taken as
s0 = −1, x0 = π , one again encounters the same critical dynamic phenomena on the critical
line (40).

This analysis explains that the occurrence of critical dynamic phenomena is caused by
the existence of a critical line on the manifold of system parameters and happens only under
a special choice of initial conditions, when the latter are touched by a separatrix. The initial
conditions for variable (21) can be varied in a wide diapason by choosing the appropriate
alternating field (5), which would yield the related linear amplitude (12) with the required
value of

γ = arg β0k = tan−1 Im β0k

Re β0k

defined in equation (19).

5. Numerical solution

In order to explicitly illustrate the critical dynamic phenomena, occurring when crossing the
critical line on the parametric manifold, we have accomplished numerical calculations of the
fractional populations

n0(t) ≡ |c0(t)|2 = 1 − s(t)

2
nk(t) ≡ |ck(t)|2 = 1 + s(t)

2
.

This can be done by numerically solving either equation (15) or (25), which are equivalent.
The results are presented in figures 1–3, where time is measured in units of α−1, the pumping
parameter b = 0.5 is fixed, while the detuning ε is varied so as to cross the critical line
(37). The initial conditions for the evolution equations are taken as s0 = −1, x0 = 0, that is
n0(0) = 1, nk(0) = 0.

In figure 1, the detuning is negative, so that one is slightly below the critical line (37). The
fractional populations oscillate displaying a kind of Rabi oscillation, if one looks for analogies
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(a)

(c)

(b)

Figure 1. The fractional populations of the ground coherent mode n0(t) (dashed line) and of the
excited topological coherent mode nk(t) (solid line) as functions of time, measured in units of α−1,
for the fixed pumping parameter b = 0.5 and the negative detuning parameter below the critical
line: (a) ε = −10−1; (b) ε = −10−2; (c) ε = −10−4.

(a) (b)

Figure 2. Dramatic changes in the dynamics of the fractional populations of the ground coherent
mode (dashed line) and excited mode (solid line) when crossing the critical line on the parametric
manifold for fixed b = 0.5 and varying detuning: (a) ε = 0; (b) ε = 10−9.
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(a)

(c)

(b)

Figure 3. Qualitatively different temporal behaviour of the fractional populations of the ground
mode (dashed line) and excited mode (solid line) after crossing the parametric critical line, with
fixed b = 0.5 and varying detuning: (a) ε = 10−4; (b) ε = 10−2; (c) ε = 10−1.

with optics [34]. However, since the problem considered here is nonlinear, there is no well-
defined constant Rabi frequency whose analogue would be now a function of time [18, 19]. In
some sense, these oscillations could be named non-linear Rabi oscillations. Approaching the
critical line (37) by increasing the detuning ε, the oscillation amplitude increases. The motion
of the population nk of the excited topological mode is limited from above by the lower parts
of separatrices and from below by the boundary nk = 0.

Figure 2 demonstrates the motion in a tiny vicinity of the critical line (37). Changing
the detuning from ε = 10−4 to ε = 0 drastically transforms the shape of oscillations. The
oscillation period more than doubles and wide flat platos in the time dependence of the
population appear. Crossing the critical line, with a microscopic variation of the detuning
from ε = 0 to ε = 10−9, again yields a drastic transformation of the population shapes. The
period is again almost doubled; the upward casps of nk(t) and downward casps of n0(t) arise.
The appearance of these casps means that the motion has passed to another phase region, as
has been discussed in the analysis of the previous section.

After crossing the critical line (37), the dynamics of the fractional populations remains
qualitatively unchanged. Increasing the detuning slightly changes the oscillation period and
smoothes the shape of the oscillation curves, as is shown in figure 3.
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In conclusion, we have presented a theory for the resonant excitation of topological
coherent modes of trapped Bose atoms. These modes are the stationary solutions to the
nonlinear Schrödinger equation, which is also sometimes called the Gross–Pitaevskii equation.
This equation provides a correct description of trapped atoms at low temperatures [1–3, 35].
The principally important part of the paper is the demonstration of the occurrence of critical
dynamic phenomena in the process of exciting coherent modes and a thorough elucidation of
the origin of these phenomena.
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